4 research outputs found

    Dendritic Cell Algorithm with Optimised Parameters using Genetic Algorithm

    Get PDF
    Intrusion detection systems are developed with the abilities to discriminate between normal and anomalous traffic behaviours. The core challenge in implementing an intrusion detection systems is to determine and stop anomalous traffic behavior precisely before it causes any adverse effects to the network, information systems, or any other hardware and digital assets which forming or in the cyberspace. Inspired by the biological immune system, Dendritic Cell Algorithm (DCA) is a classification algorithm developed for the purpose of anomaly detection based on the danger theory and the functioning of human immune dendritic cells. In its core operation, DCA uses a weighted sum function to derive the output cumulative values from the input signals. The weights used in this function are either derived empirically from the data or defined by users. Due to this, the algorithm opens the doors for users to specify the weights that may not produce optimal result (often accuracy). This paper proposes a weight optimisation approach implemented using the popular stochastic search tool, genetic algorithm. The approach is validated and evaluated using the KDD99 dataset with promising results generated

    A decentralised secure and privacy-preserving e-government system

    Get PDF
    Electronic Government (e-Government) digitises and innovates public services to businesses, citizens, agencies, employees and other shareholders by utilising Information and Communication Technologies. E-government systems inevitably involves finance, personal, security and other sensitive information, and therefore become the target of cyber attacks through various means, such as malware, spyware, virus, denial of service attacks (DoS), and distributed DoS (DDoS). Despite the protection measures, such as authentication, authorisation, encryption, and firewalls, existing e-Government systems such as websites and electronic identity management systems (eIDs) often face potential privacy issues, security vulnerabilities and suffer from single point of failure due to centralised services. This is getting more challenging along with the dramatically increasing users and usage of e-Government systems due to the proliferation of technologies such as smart cities, internet of things (IoTs), cloud computing and interconnected networks. Thus, there is a need of developing a decentralised secure e-Government system equipped with anomaly detection to enforce system reliability, security and privacy. This PhD work develops a decentralised secure and privacy-preserving e-Government system by innovatively using blockchain technology. Blockchain technology enables the implementation of highly secure and privacy preserving decentralised applications where information is not under the control of any centralised third party. The developed secure and decentralised e-Government system is based on the consortium type of blockchain technology, which is a semi-public and decentralised blockchain system consisting of a group of pre-selected entities or organisations in charge of consensus and decisions making for the benefit of the whole network of peers. Ethereum blockchain solution was used in this project to simulate and validate the proposed system since it is open source and supports off-chain data storage such as images, PDFs, DOCs, contracts, and other files that are too large to be stored in the blockchain or that are required to be deleted or changed in the future, which are essential part of e-Government systems. This PhD work also develops an intrusion detection system (IDS) based on the Dendritic cell algorithm (DCA) for detecting unwanted internal and external traffics to support the proposed blockchain-based e-Government system, because the blockchain database is append-only and immutable. The IDS effectively prevent unwanted transactions such as virus, malware or spyware from being added to the blockchain-based e-Government network. Briefly, the DCA is a class of artificial immune systems (AIS) which was introduce for anomaly detection in computer networks and has beneficial properties such as self-organisation, scalability, decentralised control and adaptability. Three significant improvements have been implemented for DCA-based IDS. Firstly, a new parameters optimisation approach for the DCA is implemented by using the Genetic algorithm (GA). Secondly, fuzzy inference systems approach is developed to solve nonlinear relationship that exist between features during the pre processing stage of the DCA so as to further enhance its anomaly detection performance in e-Government systems. In addition, a multiclass DCA capable of detection multiple attacks is developed in this project, given that the original DCA is a binary classifier and many practical classification problems including computer network intrusion detection datasets are often associated with multiple classes. The effectiveness of the proposed approaches in enforcing security and privacy in e- Government systems are demonstrated through three real-world applications: privacy and integrity protection of information in e Government systems, internal threats detection, and external threats detection. Privacy and integrity protection of information in the proposed e- Government systems is provided by using encryption and validation mechanism offered by the blockchain technology. Experiments demonstrated the performance of the proposed system, and thus its suitability in enhancing security and privacy of information in e-Government systems. The applicability and performance of the DCA-based IDS in e Government systems were examined by using publicly accessible insider and external threat datasets with real world attacks. The results show that, the proposed system can mitigate insider and external threats in e-Government systems whilst simultaneously preserving information security and privacy. The proposed system also could potentially increase the trust and accountability of public sectors due to the transparency and efficiency which are offered by the blockchain applications

    A Comparative Study of Genetic Algorithm and Particle Swarm optimisation for Dendritic Cell Algorithm

    Get PDF
    Dendritic cell algorithm (DCA) is a class of artificial immune systems that was originally developed for anomaly detection in networked systems and later as a general binary classifier. Conventionally, in its life cycle, the DCA goes through four phases including feature categorisation into artificial signals, context detection of data items, context assignment, and finally labeling of data items as either abnormal or normal class. During the context detection phase, the DCA requires users to manually pre-define the parameters used by its weighted function to process the signals and data items. Notice that the manual derivation of the parameters of the DCA cannot guarantee the optimal set of weights being used, research attention has thus been attracted to the optimisation of the parameters. This paper reports a systematic comparative study between Genetic algorithm (GA) and Particle Swarm optimisation (PSO) on parameter optimisation for DCA. In order to evaluate the performance of GADCA and PSO-DCA, twelve publicly available datasets from UCI machine learning repository were employed. The performance results based on the computational time, classification accuracy, sensitivity, F-measure, and precision show that, the GA-DCA overall outperforms PSO-DCA for most of the datasets

    Dendritic Cell Algorithm Enhancement Using Fuzzy Inference System for Network Intrusion Detection

    Get PDF
    Dendritic cell algorithm (DCA) is an immune-inspired classification algorithm which is developed for the purpose of anomaly detection in computer networks. The DCA uses a weighted function in its context detection phase to process three categories of input signals including safe, danger and pathogenic associated molecular pattern to three output context values termed as co-stimulatory, mature and semi-mature, which are then used to perform classification. The weighted function used by the DCA requires either manually pre-defined weights usually provided by the immunologists, or empirically derived weights from the training dataset. Neither of these is sufficiently flexible to work with different datasets to produce optimum classification result. To address such limitation, this work proposes an approach for computing the three output context values of the DCA by employing the recently proposed TSK+ fuzzy inference system, such that the weights are always optimal for the provided data set regarding a specific application. The proposed approach was validated and evaluated by applying it to the two popular datasets KDD99 and UNSW\_NB15. The results from the experiments demonstrate that, the proposed approach outperforms the conventional DCA in terms of classification accuracy
    corecore